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Awareness of the metabolism of second-generation antipsychotics by the cytochrome P450 (CYP) system
can inform the clinician about how to avoid and manage drug—drug interactions involving these enzymes.
Clozapine is metabolized primarily by CYPIA?2, with additional contributions by CYP2CI19, CYP2Dé and
CYP3A4. Risperidone is metabolized primarily by CYP2D6 and to a lesser extent by CYP3A4. Olanzapine
is metabolized primarily by CYPIA2 and to a lesser extent by CYP2Dé. Quetiapine and ziprasidone are
metabolized by CYP3A4. At the usual clinical doses, these drugs appear not to significantly affect the
metabolism of other medications. There is, however, a lack of in vivo metabolic data, especially for the 3
newest second-generation antipsychotics: olanzapine, quetiapine and ziprasidone.

La connaissance du métabolisme des neuroleptiques de deuxiéme génération par le systéme cytochrome
P450 (CYP) peut informer le clinicien sur la fagon d’éviter et de prendre en charge les interactions entre
médicaments qui mettent en cause ces enzymes. La clozapine est métabolisée principalement par I'enzyme
CYPIA2 et les enzymes CYP2CI9, CYP2Dé6 et CYP3A4 contribuent aussi au métabolisme. La rispéridone
est métabolisée principalement par la CYP2D6 et, a un degré moindre, par la CYP3A4. L’olanzapine est
métabolisée principalement par la CYPIA2 et, a un degré moindre, par la CYP2D6. La quétiapine et la
ziprasidone sont métabolisées par la CYP3A4. Aux doses cliniques habituelles, ces médicaments ne
semblent pas avoir d’effet significatif sur le métabolisme d’autres médicaments. On manque toutefois de
données métaboliques in vivo, particuliérement dans le cas des trois neuroleptiques de deuxieme généra-
tion les plus récents, soit I'olanzapine, la quétiapine et la ziprasidone.

Introduction owing to the acceptance of a new class of medications,

generally termed atypical, novel or second-generation
Schizophrenia is a chronic illness affecting approxi- antipsychotics. These medications are reported to have
mately 1% of the population.' Its pharmacologic man- a lower incidence of side effects than the older anti-
agement has changed over the past decade, in part psychotics, and their use has arguably become first-
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line.?® In this review, we will use the term second-
generation antipsychotics to describe these medications.

Coincidentally, there has been increased awareness
among clinicians of the potential for pharmacokinetic
drug—drug interactions and a greater understanding of
the role that cytochrome P450 (CYP) enzymes may
play in these interactions. Most individuals with
schizophrenia take medications indefinitely and at
some point take additional medications. Therefore, the
risk of polypharmacy-related complications is very real
in this population.

This article reviews the available data on the CYP-
mediated metabolism of the commercially released
second-generation antipsychotics clozapine, risperi-
done, olanzapine, quetiapine and ziprasidone. Non-
CYP-mediated pathways, such as the phase II reaction
glucuronidation, are involved in the metabolism of
some second-generation antipsychotics* but are not a
focus of this review. We emphasize the potential for
metabolic drug—drug interactions and, as much as pos-
sible, rely on data from in vivo studies of humans. Drug
metabolism is summarized; comprehensive reviews are
available elsewhere.™ We discuss the difficulties of in-
terpreting the in vivo data, especially resolving conflict-
ing data and generalizing the findings from controlled
in vivo studies and case reports to clinical practice.

Drug metabolism

Pharmacologically active agents can interact at several
levels, including drug metabolism. Drug metabolism
can be defined as the chemical modification of the drug
that occurs in a biologic environment. The primary role
of drug metabolism is to facilitate the deactivation and
excretion of the xenobiotic from the body. In addition,
metabolism may result in the formation of active
metabolites that have pharmacologic activities similar
to those of the parent compound or altogether different
biologic actions, including the ability to alter the
metabolism of other chemical compounds.

The liver is the primary site of drug metabolism;
other tissues, such as kidney, brain, skin, blood, lung
and gastrointestinal mucosa, also contribute.” Most
medications are transformed in phase I or II reactions.
Phase I reactions result in conversion of the parent
drug, usually by oxidation, reduction or hydrolysis, to
a more hydrophilic metabolite. Phase II reactions result
in inactivation of the medication through chemically
coupling to an endogenous substance, such as

glucuronic acid, glycine, glutathione or glutamine, or
conjugation with acetate, sulfate or methyl groups,
thus facilitating renal excretion.

Oxidative reactions are among the most important of
the phase I reactions. They are mediated by the family
of enzymes that constitute the CYP system. At least 17
mammalian CYP gene families have been defined, and
more than 30 human gene products have been identi-
fied.""* CYPs with 40% or greater DNA sequence ho-
mology are classified in the same family, and those with
55% or greater sequence homology are classified in the
same subfamily. Thus, CYP3A4 is the designation of the
CYP enzyme in family 3, subfamily A, gene product 4.
Any drug may be a substrate for one or more CYPs.

Individual CYPs may be present in different forms or
amounts in different people.”"” Thus, people may be
described as poor metabolizers (PMs) or extensive
metabolizers (EMs) of certain drugs. It is generally well
accepted that CYP2D6 and CYP2C19 exist as genetic
polymorphisms.”*" Ultrarapid metabolizers, with mul-
tiple copies of the CYP2D6 gene, have been identi-
fied."" There is less support for polymorphisms for
CYP1A2,“" CYP2A6"" and CYP3A4.""

Inhibition and induction of CYPs are among the
most common causes of drug interactions.” The role of
polypharmacy in the development of medication-
related side effects is not limited to simple competition
for a specific CYP. A drug (or its metabolites) may be a
substrate for, and an inhibitor or inducer of, the same
CYP. Further, a drug (or its metabolites) may alter the
activity of a specific CYP without being a substrate.
Thus, concomitantly prescribed medications may affect
the serum levels of substrates of those CYPs.

Drug interaction at the CYP level has been reviewed
recently.” Direct drug (or metabolite) interaction with
CYPs may cause inhibition by 1 of 3 broad mecha-
nisms: reversible inhibition, quasi-irreversible inhibi-
tion and irreversible inhibition. In vivo, the last 2 inhi-
bition subtypes are, for practical purposes, equivalent,
causing a loss of a CYP’s activity through formation of
a covalently (irreversibly) modified enzyme—-drug
complex or a drug—enzyme complex that is bound so
tightly that dissociation is unlikely (quasi-irreversible);
in both cases, there is lowered V,,, and capacity. In
either case, restoration of normal CYP activity requires
synthesis of new enzyme. With reversible inhibition,
normal function can be restored rapidly after the
inhibiting agent is removed from the body; there is
competition between the inhibitor and the second-
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generation antipsychotic for the CYP, with an increase
in K, but an unaltered V..

CYP activity also can be increased by medications,
usually through increased production of the enzyme.
Known to be inducible are CYP1A1, CYP1A2, CYP2A6,
CYP2C9, CYP2C19, CYP2E1 and CYP3A4.” In contrast
to inhibition, induction via increased CYP levels is
slow. Allosteric interaction, binding of a drug (or
metabolite) to a site on the enzyme removed from the
active site, may result in a more active CYP and would
occur more quickly.

It is not always possible to definitively identify
whether a specific CYP is involved in the metabolism
of a particular drug. A number of in vitro approaches
have been used to investigate and predict drug-CYP
interactions.”” Generally, the drug is incubated in the
presence of human liver tissue (liver slices, micro-
somes, subcellular fractions of hepatic tissues or
cultured hepatocytes) or microsomes prepared from
various cell systems in which specific cDNAs for
human CYPs are expressed,””* and the production of
specific metabolites or a decrease in the amount of
parent drug is measured. Refinements include the use
of selective CYP inhibitors, probe substrates (drugs
known to be metabolized by a specific CYP) or mono-
clonal antibodies to a particular CYP. Interpretation of
the results, particularly as to their predictive clinical
value, has been reviewed.”*? Similarly, a number of
approaches have been used in vitro to assess the ability
of drugs to induce CYPs.* However, although in vitro
investigations can provide information on whether a
drug (or metabolite) is a substrate, inhibitor or inducer
of a particular CYP, the contribution of each CYP to the
drug’s metabolism in vivo is speculative.

There have been few controlled in vivo studies of
drug metabolism. In some, human volunteers have
received a known inhibitor or inducer of a specific CYP
along with the drug under investigation. The rates of
clearance of the drug in the presence and absence of the
inhibitor or inducer are compared to determine
whether the CYP is involved in the drug’s metabolism.*

Another in vivo approach has been to exploit known
genetic polymorphisms and their effects on drug me-
tabolism, clearance, inhibition and induction. The sub-
ject is identified as being a PM or an EM, and the rate
of metabolism of the specific drug is measured.* This
type of study is limited to the CYPs for which there are
known polymorphisms that affect activity.

For the most part, data on the in vivo metabolism of

a drug by a specific CYP have been derived from case
reports on individuals who have received medications
concurrently. The role of a particular CYP can only be
inferred from these studies. It is possible, for example,
that the observed clinical effects resulted from interac-
tions other than CYP-mediated metabolism in the liver.
Results in case reports should be taken as suggestive,
not conclusive. Case reports are by definition noncon-
trolled. Factors such as diet, other illnesses and poly-
morphic status can profoundly affect a drug’s meta-
bolism.*”* Furthermore, results are often from a single
or very few individuals, and blood samples may have
been drawn without due consideration of the time
since the last dose.

Recently, a number of case series have been published
in which individuals receiving a second-generation
antipsychotic were treated with a second medication
known to be metabolized by, or to inhibit or induce, a
particular CYP. The effect on the serum level of the
antipsychotic was measured. As discussed by Lin and
Lu,” results from these studies can be difficult to inter-
pret and generalize from, given the interindividual
variability of CYP activity in humans. This variability
stems from a number of factors, including the distribu-
tion of CYPs in other tissues, the polymorphic status of
the individual (with respect to absolute CYP amounts,
CYP activity and sensitivity to inhibitors and inducers),
age, health status and environmental factors such as diet
and cigarette smoking. For example, EMs are more sus-
ceptible to enzyme inhibition than are PMs.” Further-
more, a particular drug may be metabolized by more
than one CYP; thus, inhibiting one CYP may not result
in a significant change in serum levels.

Clozapine (Table 1)

Clozapine was the first second-generation antipsychotic
released for clinical use. Consequently, there are more
data available on its metabolism than on other medica-
tions in this class. Byerly and DeVane,” as well as Tay-
lor,”" have reviewed the pharmacokinetics of clozapine.

CYP1A1

We did not identify any in vivo studies that implicated
CYP1A1 in the metabolism of clozapine. However,
Fang and colleagues,” in an in vitro study, failed to
find evidence supporting a role for this enzyme in the
metabolism of clozapine.
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CYP1A2

It seems well established that CYP1A2 is involved in
the metabolism of clozapine. Pirmohamed and asso-
ciates,” using enzyme-selective inhibitors in vitro,
showed that CYP1A2 catalyzes the demethylation of
clozapine. Using a variety of in vitro techniques, in-
cluding human liver microsomes, chemical inhibitors,
CYP-specific antibodies and a yeast expression system
to express CYP1A2, Eiermann and coworkers™ also
were able to demonstrate involvement of this enzyme.
Linnet and Olesen™ obtained similar results using com-
mercial microsomes prepared by means of cDNA ex-
pression, although they suggested that CYP1A2 was
likely to play only a minor role in the in vivo metabo-
lism of clozapine at therapeutic concentrations. More
recently, the same authors,” using a lower, more thera-
peutic concentration of clozapine, found that CYP1A2
and CYP2C19 were most responsible for clozapine
demethylation in vitro, CYP2C9 and CYP2D6 playing a
more modest role. At higher concentrations of cloza-
pine, CYP3A4 becomes more relevant. Fang and col-
leagues®™ demonstrated that CYP1A2 could catalyze
both demethylation of clozapine and the formation of
clozapine-N-oxide, although its role in the formation of
the latter is likely minor. Similarly, Tugnait et al” re-
ported that inhibition of CYP1A2 in vitro by antibodies
or chemical inhibitors affected both demethylation and
oxidation of clozapine significantly but that the effect
on the former was greater in magnitude.

Fluvoxamine, a selective serotonin reuptake inhibitor
(SSRI), inhibits both CYP1A2%* and CYP2C19.#%

Table I: Interaction between cytochrome P450 (CYP)
enzymes and clozapine

Involved in metabolism of clozapine

Inhibited by
In vivo clozapine; in
vitro data
Enzyme Invitro  Case reports  Case series only
CYPIAI -
CYPIA2 + + + -
CYP2C8 +/-
CYP2C9 + (NC) +(NC)
CYP2CI19 + -
CYP2D6 +/- +/— +/—- + (NC)
CYP2EI -
CYP3A4 + + - -

Note: All studies were performed on humans or human tissue.

+ = data support role; — = data do not support role; +/— = data are contradictory; NC =
likely not clinically relevant. Space left blank if no data available.

The above footnotes apply to all tables in this article.

Using human hepatocyte microsystem preparations,
Chang and colleagues* noted that fluvoxamine caused
48.5% inhibition of clozapine metabolism; 42.0% inhi-
bition was observed with the chemical CYP1A2 fura-
fyline. Similarly, Olesen and Linnet* noted significant
inhibition of clozapine demethylation in vitro after
incubation with fluvoxamine, a reaction catalyzed in
vitro by CYP1A2, CYP2C9, CYP2C19, CYP2D6 and
CYP3A4.3* However, since fluvoxamine has a lower K
for CYP1A2 and CYP2C19, the result is probably due
primarily to inhibition of 1 of these 2 enzymes.

One method of determining CYP1A2 polymorphism
is to measure the clearance rate of caffeine, a substrate
of this enzyme. Bertilsson and associates* observed
that individuals who rapidly cleared caffeine had
lower serum levels of clozapine after receiving a single
dose of this medication. Bender and Eap* observed
that in 2 individuals who were not responding clini-
cally to clozapine, there was a similar correlation be-
tween rapid clearance of caffeine and low serum levels
of clozapine; a third individual who was not respond-
ing to clozapine did not have rapid caffeine clearance.
After reviewing drug-monitoring data (dose and
serum levels), Jerling and coworkers® demonstrated,
using nonparametric statistical methods, a similarity
in the distribution of clozapine clearance rates and
CYP1A2 phenotype in the population.

There is growing evidence that interactions between
clozapine and caffeine may be clinically relevant.
Vanier and Chouinard* described an individual being
treated with clozapine who showed signs of increased
arousal and extrapyramidal symptoms after consum-
ing caffeinated beverages; the signs and symptoms re-
solved when noncaffeinated drinks were substituted.
Clozapine levels were not measured, but, because the
reaction was acute, the authors concluded that it was
due to potentiation of dopamine D,-receptor stimula-
tion secondary to the dopamine D,-agonist and adeno-
sine A,-antagonist activity of caffeine. Odom-White
and de Leon” observed an increase in serum levels of
both clozapine and norclozapine in a patient who con-
sumed an excessive daily amount of caffeine (more
than 1200 mg). Carrillo et al* reported a case series in
which serum levels of clozapine, norclozapine and
clozapine-N-oxide were measured in 7 patients ini-
tially, after 5 days without caffeine and 2 weeks after
reintroduction of caffeine. They noted a statistically
significant reduction in levels of clozapine (47%) and
clozapine-N-oxide (31%) and a significant increase
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(185%) in the ratio of norclozapine to clozapine levels
after caffeine was removed from the diet; the ratio
correlated with CYP1A2 activity, as measured by the
caffeine clearance rate. All serum levels returned to the
original values after caffeine was reintroduced.

Cigarette smoking induces CYP1A2.* Smokers have
been observed to have lower serum levels of clozapine
than nonsmokers, sometimes significantly lower**
and sometimes not.” This interaction can have clinical
significance. Two patients receiving clozapine had
seizures after they stopped smoking.** The seizures
were attributed to elevated serum levels of clozapine,
although the levels were not measured. After recovery,
1 of the patients required a 40% reduction in the dose
of clozapine.”

Increased serum levels of clozapine (and norcloz-
apine) after the start of fluvoxamine treatment have
been reported from several cases,”® and some of the
patients had side effects indicative of elevated cloza-
pine levels.*** The clozapine levels returned to normal
when fluvoxamine was discontinued.®®-* The effects of
fluvoxamine on clozapine serum levels have also been
studied prospectively. Wetzel and associates™ treated in-
dividuals who had stable serum clozapine levels with
fluvoxamine and found significant increases in the
serum levels of clozapine, N-desmethylclozapine and
clozapine-N-oxide; they estimated that the elimination
half-life of clozapine tripled. Chang and colleagues*
treated 9 men with schizophrenia with fluvoxamine for
2 weeks. Immediately before and on the last day of
fluvoxamine treatment, they administered a single
dose of clozapine and measured the serum levels of the
antipsychotic and its metabolites over a 48-hour pe-
riod. They observed a significant increase in clozapine
level and patient sedation with the second dose. The
serum levels of the metabolites decreased transiently
after fluvoxamine treatment.

Although the interaction between clozapine and flu-
voxamine has been viewed primarily in terms of neg-
ative outcomes resulting from excessive serum levels
of clozapine, it could have a benefit. Lammers and co-
workers® treated patients concomitantly with fluvox-
amine and a titrating dose of clozapine, obtaining
therapeutic serum levels of clozapine with relatively
low daily doses (i.e., 96.9 + 37.2 mg); the patients had
clinically significant reductions of symptoms while
avoiding the sedation associated with the usual initial
doses of clozapine. In a similar study, Lu et al* treated
patients with clozapine at a daily dose of 100 mg; after

adding fluvoxamine to the regimen, they observed a
significant increase in clozapine serum levels that co-
incided with clinical relief in two-thirds of the patients,
without significant side effects.

Further data supporting a role for CYP1A2 in the
metabolism of clozapine comes from publications on
the effects of treatment with antibiotics. Joos, Frank
and Kaschka” described a patient in whom the serum
clozapine level decreased and symptoms re-emerged
upon treatment with rifampin (an inducer of both
CYP1A2 and CYP3A®), isoniazid (a general inducer of
CYPs®) and pyrazinamide. The symptoms resolved
when the clozapine dose was increased. When the
rifampin was replaced with ciprofloxacin (an inhibitor
of CYP1A2"), the serum clozapine level increased 60%
despite lowering of the dose of clozapine. Similarly,
Fuhr and colleagues™ noted an 80% increase in serum
clozapine levels resulting from treatment with the
CYP1A2 inhibitor fluoroquinolone.” In a randomized
double-blind crossover study, Raaska and Neuvonen™
found that individuals with schizophrenia who were
clinically stable with clozapine treatment had a signifi-
cant increase in plasma clozapine and N-desmethyl-
clozapine levels when treated additionally with cip-
rofloxacin as compared with placebo; the increases
correlated with the concentration of ciprofloxacin in
the blood.

CYP2C subfamily

Compared with CYP1A2, relatively few data are avail-
able on the role of the CYP2C subfamily in the metabo-
lism of clozapine. Eiermann and coworkers™ reported
that CYP2C8 is not involved in the metabolism of
clozapine in vitro. In contrast, the study of Fang and
colleagues® indicated that this enzyme could catalyze
the N-demethylation of clozapine and the formation of
clozapine-N-oxide in vitro, although to a lesser extent
than CYP1A2 and CYP3A4. In vitro studies have
shown that CYP2C9 can demethylate clozapine,™**
although clinically, its role is likely minor. The same
authors independently reported that CYP2C19 could
metabolize clozapine in vitro, although they disagreed
about this enzyme’s in vivo relevance; Linnet and Ole-
sen™* concluded that it might account for up to 35% of
in vivo metabolism. As discussed earlier, fluvoxamine
can cause clinically relevant increases in serum cloz-
apine levels, although it is a more potent inhibitor of
CYP1A2%* than of CYP2C19.%% The in vivo role of
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CYP1A2 is supported by reports not involving fluvox-
amine; confirmation of an in vivo role for CYP2C19 in
the metabolism of clozapine requires additional study.

CYP2D6

The evidence concerning the role of CYP2D6 in the
metabolism of clozapine is contradictory. In vitro stud-
ies using microsomal preparations of cDNA-expressed
CYP2D6%** have indicated that this enzyme can
catalyze the metabolism of clozapine. However, there is
some question about whether the degree of metabolism
seen is clinically relevant.”** Eiermann and cowork-
ers* reported that this enzyme was not involved in the
in vitro metabolism of clozapine. Using liver prepar-
ations from PMs and EMs, Pirmohamed and associ-
ates” found no correlation between the CYP2D6 pheno-
type and the in vitro degradation of clozapine.

A number of SSRIs inhibit CYP2D6. Eggert, Crismon
and Dovjon™ reported a case in which there was no
change in serum levels of clozapine after the individual
taking this medication was started on fluoxetine ther-
apy. In contrast, Joos and associates” observed a clini-
cally significant increase in clozapine levels 19 days
after the start of paroxetine treatment in a patient who
was an EM. As Lin and Lu" noted, such individuals are
more susceptible to the effects of concomitantly pre-
scribed inhibitors. In a larger, naturalistic study, Centor-
rino et al” reported that individuals treated with cloz-
apine alone had significantly lower serum levels than
patients who were concomitantly treated with paroxe-
tine, fluoxetine or sertraline. Previously, they had
reported that only 4 of 8 patients had elevated levels of
clozapine after being treated with fluoxetine.” In a pro-
spective study, Spina and coworkers™ observed signifi-
cant increases in the serum levels of clozapine and its
metabolites in 9 of 10 patients treated with fluoxetine
for 8 weeks. By contrast, Wetzel and associates™ found
no such increase in 13 of 14 patients concomitantly
treated with paroxetine in their prospectively study.

Two case reports have been published”® describing
patients who experienced a 2-fold increase in serum
clozapine level after taking the CYP2D6 substrate
risperidone.

In all but 1 of the studies concerning CYP2D6, the
patients were not characterized by polymorphic status,
and it is possible that some of the discrepancies reflect
this fact. Two studies attempted to correlate polymor-
phic status of CYP2D6 with clozapine levels;*"* neither

was able to do so. The in vivo metabolism of clozapine
by CYP2D6 may not generally be clinically significant.
However, individuals who are CYP2D6 EMs, and
therefore more susceptible to inhibition of this en-
zyme,"” and have a PM phenotype for another CYP
involved in clozapine metabolism (such as CYP1A2)
may be more sensitive to drug—drug interactions
related to CYP2Deé.

CYP2E1

From in vitro studies, CYP2E1 does not appear to be
involved in the metabolism of clozapine.™**

CYP3A4

Several in vitro studies have indicated that clozapine
metabolism can be catalyzed by CYP3A4.>*% From in
vitro stimulation studies, Linnet and Olesen® con-
cluded that this enzyme may be responsible for up to
35% of clozapine metabolism in vivo. However, more
recently, they reported that at therapeutic concentra-
tions of clozapine the role of CYP3A4 may be minor.*
Tugnait et al” reported that, whereas CYP1A2 was
more important in N-demethylation of clozapine,
CYP3A4 was more important in N-oxidation.

Few in vivo studies have investigated the role of
CYP3A4 in the metabolism of clozapine. After taking
erythromyecin, an inhibitor of CYP3A4,” 2 patients had
side effects consistent with clozapine toxicity and ele-
vated serum levels;*® after the antibiotic was discon-
tinued, the side effects resolved and the serum levels of
clozapine fell. However, human volunteers showed no
significant changes in the serum concentration or rate
of renal clearance of clozapine or its metabolites after a
single dose when also treated with erythromycin.*

Concomitant administration of nefazodone, an in-
hibitor of CYP3A4,” has been shown to result in a
dose-dependent increase in the serum clozapine
level.® However, in 6 patients with schizophrenia,
Taylor et al* observed only minor increases in the
serum levels of clozapine (4%) or norclozapine (16%)
after nefazodone was introduced. They did not report
the serum levels of clozapine-N-oxide but did note
that some subjects had more significant increases in
the levels of clozapine and norclozapine; perhaps
these subjects were CYP1A2 PMs and therefore more
dependent on alternative pathways of clozapine
metabolism. Raaska and Neuvonen® had similar
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negative results using the CYP3A4 inhibitor itracon-
azole. They too did not report clozapine-N-oxide
serum levels but noted that a patient who was also
receiving fluoxetine experienced a moderate elevation
in levels of both clozapine and desmethyl-N-cloza-
pine. Thus, it seems likely that CYP3A4 is involved in
the metabolism of clozapine, although clinically
significant interactions may occur only in individuals
with impaired alternative pathways of metabolism,
such as via CYP1A2.

Inhibition or induction of CYPs by clozapine

Clozapine may affect the CYP-mediated metabolism of
other medications. However, in vivo data are lacking.
Ring and colleagues” reported from in vitro studies
that clozapine can inhibit CYP2C9, CYP2C19, CYP2D6
and CYP3A, the K; values being 31 pM, 69 pM, 19 uM
and 99 pM, respectively. Shin, Soukhova and
Flockhart” reported K; values from studies with differ-
ent metabolic substrates of CYP1A2 (> 300 uM),
CYP2C9 (31 uM), CYP2C19 (> 300 pM), CYP2D6
(39 uM) and CYP3A (> 300 pM) and predicted from
these results that there would be no inhibition by
clozapine of these CYPs in vivo. However, Smith and
Risken” reported a doubling of the serum levels of
nortriptyline (a CYP2D6 substrate) after a patient was
started on clozapine therapy. Clozapine may accum-
ulate in the liver and thus inhibit CYPs. Alternatively,
perhaps clozapine’s metabolites are more potent in-
hibitors than the parent drug and are responsible for
any observed clinical interactions; the in vitro studies
were performed only with clozapine.

The only reported investigations into the potential of
clozapine to induce CYPs have been in vitro studies
using nonhuman tissues. Incubation of rat tissues with
clozapine resulted in increased levels of CYP1A,
CYP2B and CYP3A but not CYP2D4.* The clinical rel-
evance of these findings is unclear. Nonetheless, the
lack of reports indicating an effect on the metabolism
of other prescribed drugs since clozapine was intro-
duced for clinical use suggests that any inhibition or
induction is insignificant.

Risperidone (Table 2)

Compared with clozapine, few publications have
reported potential drug—drug interactions involving
risperidone. The paucity of data may reflect a relative

lack of clinical experience with this medication,
although given the time the drug has been available,
this seems unlikely. Rather, the lack of publications on
adverse events likely reflects either greater safety or a
lack of recognition that symptoms are due to interac-
tions with CYPs. Caccia” recently reviewed the metab-
olism of risperidone.

CYP1A subfamily

In vitro studies using human liver microsomes” and
recombinant human” CYP1A1 and CYP1A2 failed to
find evidence of the involvement of either enzyme in
the metabolism of risperidone.

CYP2C subfamily

Risperidone is not metabolized by CYP2C9 or CYP2C19
in vitro.””

CYP2Dé6

In vitro studies have shown that CYP2D6 catalyzes the
metabolism of risperidone®” to its major metabolite,
9-hydroxyrisperidone.”

Several studies have attempted to correlate CYP2D6
polymorphic status with serum levels of risperidone
and 9-hydroxyrisperidone. Using a single-dose model
in human volunteers, Huang and associates™ observed
a correlation between polymorphic phenotype and the
formation of 9-hydroxyrisperidone. In a cross-sectional
study, Olesen and coworkers'” noted that patients who
were CYP2D6 PMs had an increased ratio of risperi-
done to 9-hydroxyrisperidone but no difference in total
concentration of the active moiety (risperidone plus
9-hydroxyrisperidone)." Further, they found no cor-
relation between side effects and polymorphic status.

Table 2: Interaction between CYPs and risperidone

Involved in metabolism of risperidone

In vivo Inhibited by

In risperidone; in
Enzyme vitro Case reports  Case series  vitro data only
CYPIAI -
CYPIA2 - 3
CYP2C9 - 3
CYP2CI9 - 3
CYP2D6 + + - +(NC)
CYP3A4 +/— + + _
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Similarly, Scordo et al'” and Bork and colleagues'”
reported a correlation between polymorphic status and
serum risperidone but not 9-hydroxyrisperidone levels.
Bork and colleagues observed that patients who were
genotypically CYP2D6 PMs were more likely to stop
treatment with risperidone, although they noted limi-
tations to the study design. Spina and associates," in a
prospective study of 10 patients stabilized on risperi-
done therapy who were concomitantly given the
CYP2D6 inhibitor paroxetine, found a significant
increase in the serum level of risperidone but not 9-
hydroxyrisperidone; only 1 patient had side effects
(parkinsonian symptoms) that might have been attrib-
utable to the increase.

Recently, there has been an increased interest and
awareness of the potential differences in clinical efficacy
of enantiomers (nonsuperimposable mirror images,
akin to the right and left hand) of drugs."™'* Risper-
idone does not have a chiral centre, but one is formed
when it is metabolized to 9-hydroxyrisperidone, the
result being stereoisomers. Yasui-Furukori and cowork-
ers'® have demonstrated that CYP2D6 plays a predom-
inant role in the formation of (+)-9-hydroxyrisperidone
in vivo.

CYP3A4

Initial in vitro investigations did not indicate a role
for CYP3A4 in the metabolism of risperidone.” How-
ever, Fang, Bourin and Baker” noted that ketocon-
azole (an inhibitor of CYP3A4) could inhibit the for-
mation of 9-hydroxyrisperidone in vitro. Bork and
colleagues' noted in their study a number of cases in
which inhibitors and inducers of CYP3A4 affected the
serum levels of risperidone and had potential clinical
significance. One patient receiving the CYP3A4
inducer carbamazepine had a doubling in the serum
level of 9-hydroxyrisperidone and severe akathisia
after the anticonvulsant was discontinued. Another
patient had akathisia, parkinsonian symptoms and a
significant elevation in the serum level of 9-hydroxy-
risperidone after the CYP3A4 inducer mesotidazine
was discontinued. A patient receiving the CYP3A4
inhibitor nefazodone experienced similar symptoms,
although the serum levels of risperidone and 9-
hydroxyrisperidone in the absence of nefazodone
treatment were not reported. De Leon and Bork'”
reported a case in which the 9-hydroxyrisperidone
level doubled after carbamazepine was discontinued.

Spina et al'® observed that individuals receiving
carbamazepine but not sodium valproate had lower
serum levels of risperidone and 9-hydroxyrisperi-
done than controls, although only the difference in
the levels of the metabolite was statistically signif-
icant. In all the reports involving CYP3A4, only the
level of 9-hydroxyrisperidone seemed to be affected
by alterations in CYP3A4 activity; this may indicate
that CYP3A4 is involved predominantly in the
metabolism of 9-hydroxyrisperidone. Interestingly,
Spina and colleagues'” noted a decrease in the
plasma levels of both risperidone and 9-hydroxy-
risperidone and an exacerbation in psychotic symp-
toms after carbamazepine was taken by a patient
who was a CYP2D6 PM.

Formation of 9-hydroxyrisperidone has the potential
to result in the production of enantiomeric isomers.
Ketoconazole inhibits the formation of (-)-9-hydroxy-
risperidone,'” suggesting that the metabolism of
risperidone by CYP3A4 results in the synthesis of this
specific enantiomer. The clinical significance of this
finding remains to be determined.

Inhibition of CYPs by risperidone

Risperidone apparently does not inhibit CYP1A2,
CYP2C9, CYP2C19 or CYP3A. Its minor inhibition of
CYP2D#6 is likely not clinically relevant at therapeutic
doses of the antipsychotic.”"

Olanzapine (Table 3)

The role of CYPs in the metabolism of olanzapine has
become clearer in recent years. Callaghan and associ-
ates'” reviewed the pharmacokinetics and pharmaco-
dynamics of olanzapine. Markowitz and coworkers'”
recently found that human volunteers treated with the
glucuronidation inhibitor probenecid showed statisti-
cally significant changes in plasma pharmacokinetic

Table 3: Interaction between CYPs and olanzapine

Involved in metabolism of olanzapine

In vivo Inhibited b)’
In olanzapine; in
Enzyme vitro  Case reports  Case series  vitro data only
CYPIA2 + + + _
CYP2C9 3
CYP2D6 + +(NC) 3
CYP3A4 - :
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parameters that were not reflected in the serum clear-
ance of olanzapine.

CYP1A2

From in vitro studies, Ring et al'”® suggested that
CYP1A2 was responsible for the formation of N-des-
methylolanzapine. Callaghan and associates'! noted
that the formation of this metabolite correlated signifi-
cantly with olanzapine clearance rates in vitro.

In a placebo-controlled study, Médenpdd and col-
leagues™ observed that concomitant treatment with the
CYP1A2 inhibitor fluvoxamine resulted in increased
serum levels and decreased rates of clearance of olanza-
pine, along with decreased serum levels of N-des-
methylolanzapine." Similarly, in a single patient,
Markowitz and DeVane" noted that concomitant treat-
ment with the CYP1A2 inhibitor ciprofloxacin resulted
in a doubling of the serum olanzapine levels that
reversed when the antibiotic was discontinued;'® the
patient did not have side effects attributable to the
increased levels of the antipsychotic. Further support
for an in vivo role for CYP1A2 in the metabolism of
olanzapine comes from the observation by Callaghan
and associates that smokers had lower serum levels
and higher clearance rates than nonsmokers.

Carbamazepine induces both CYP1A2 and CYP3A4."
Two groups of investigators'”'"* reported a decrease in
serum olanzapine levels when patients were treated
concomitantly with this anticonvulsant. Owing to a lack
of evidence supporting a role for CYP3A4 in the metab-
olism of olanzapine, they concluded that the effects of
carbamazepine on olanzapine metabolism were via
induction of CYP1A2.

CYP2D6

CYP2D6 appears to be responsible for the formation of
the metabolite 2-hydroxyolanzapine in vitro."” Cal-
laghan and associates' found that concomitant treat-
ment with the CYP2D6 inhibitor fluoxetine resulted in
statistically significant but “clinically insignificant”
changes in the serum levels and rates of clearance of
olanzapine.

CYP3A4

There is no evidence, including in vitro data,"* support-
ing a role for CYP3A4 in the metabolism of olanzapine.

Inhibition of CYPs by olanzapine

Olanzapine does not inhibit CYP1A2, CYP2C9,
CYP2D6 or CYP3A™'™ in vitro at K; values that appear
to be clinically relevant. Macias and associates'”
reported that olanzapine did not affect the metabolism
of the CYP1A2 substrate theophylline in vitro.

Quetiapine (Table 4)

Quetiapine has been available commercially for a rel-
atively short time. Consequently, clinical data on po-
tential drug—drug interactions are lacking. Dev and
Raniwalla™ have reviewed quetiapine’s clinical safety.

CYP1A2

According to the manufacturer, quetiapine is not
metabolized by CYP1A2." Goldstein™ reported that
cigarette smoking does not affect the pharmacokinetics
of this drug.

CYP2C19

According to the manufacturer, quetiapine is not
metabolized by CYP2C19."

CYP2Dé6

According to the manufacturer, the metabolism of
quetiapine is altered insignificantly by concomitant
administration of imipramine or fluoxetine.” Thus, it is
unlikely that CYP2D6 is involved in the in vivo metabo-
lism of quetiapine.

CYP3A4
According to the manufacturer, quetiapine is primarily

Table 4: Interaction between CYPs and quetiapine

Involved in metabolism of quetiapine

In vivo Inhibited b)’

In quetiapine; in
Enzyme vitro  Case reports  Case series  vitro data only
CYPIA2 - - -
CYP2C9 _
CYP2CI9 - _
CYP2D6 - _ B
CYP3A4 + + -
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metabolized by CYP3A4.™ In a multiple-dose study,
concomitant administration of the CYP3A4 inhibitor
ketoconazole resulted in a significant increase in serum
quetiapine levels and half-life.” Concomitant adminis-
tration of the CYP inducer phenytoin resulted in a sig-
nificant decrease in serum quetiapine levels that cor-
responded with an increase in clearance rates;” the
investigators concluded that since quetiapine is pri-
marily metabolized by CYP3A4, the observed pharma-
cokinetic changes were due to induction of CYP3A4.
Savasi, Millson and Owen' reported a case in which
the serum levels of quetiapine increased 24-fold after
concomitant phenytoin administration was stopped
and another case in which the serum levels of quetia-
pine decreased with concomitant administration of the
CYP3A4 inducer carbamazepine.

Inhibition or induction of CYPs by quetiapine

According to the manufacturer, quetiapine does not
affect the metabolism of compounds known to be me-
tabolized by CYP1A2, CYP2C9, CYP2D6 or CYP3A4.™

Ziprasidone (Table 5)

Ziprasidone has only recently been released to the
market. Using human liver microsomes, CYP-specific
inhibitors and recombinant enzymes, Prakash and
coworkers"® found no evidence supporting a role for
CYP1A2, CYP2C9, CYP2C19 or CYP2D6 in the metabo-
lism of this drug in vitro.

CYP3A4
In vitro data indicate that CYP3A4 is the primary CYP

involved in the metabolism of ziprasidone." As ex-
pected, Prakash and coworkers™ found that concomi-

Table 5: Interaction between CYPs and ziprasidone

Involved in metabolism of ziprasidone

Inhibited by
In vivo ziprasidone;
in vitro data
Enzyme Invitro  Case reports  Case series only
CYPIA2 -
CYP2C9 -
CYP2CI9 -
CYP2D6 - + (NC)
CYP2EI -
CYP3A4 + + + (NC)

tant administration of CYP3A4 inhibitors altered the
drug’s pharmacokinetics. In an open-label, randomized,
crossover study, Micelli et al* observed a statistically
significant increase in serum levels of this antipsychotic
when administered along with ketoconazole.

Inhibition of CYPs by ziprasidone

In vitro data indicate that, although ziprasidone can
inhibit CYP2D6 and CYP3A4, the K, values are such
that in vivo inhibition is unlikely at clinical doses of the
drug." This finding is supported by the observation
that ziprasidone did not alter the metabolism of the
CYP2D6 substrate dextromethorphan in vivo.””

Conclusions

Clozapine is metabolized by both CYP1A2 and CYP3A4.
Concomitant use of this medication and inhibitors of
these enzymes should be carried out with caution and
adequate supervision. In addition, individuals who are
EMs because of multiple copies of the CYP2D6 gene
may be susceptible to side effects when treated concom-
itantly with clozapine and CYP2D6 inhibitors.

Risperidone is metabolized primarily by CYP2D6
and to a lesser degree by CYP3A4. Although polyphar-
macy can result in elevated serum levels of the anti-
psychotic, the risks of inhibiting its metabolism appear
to be minimal. Among the second-generation antipsy-
chotics, risperidone seems to have the greatest ability
to inhibit the metabolism of other medications, but the
risk is low at the usual clinical doses.

The 3 newest antipsychotics were approved for com-
mercial release in a regulatory environment in which
data about the drug’s metabolism and the potential
risks of polypharmacy, particularly in relation to the
CYP enzymes, are required and reviewed before ap-
proval. This fact, combined with the relatively short pe-
riod of availability, may account for the lack of data in
the scientific literature on the metabolism of these med-
ications. Olanzapine is metabolized primarily by
CYP1A2, with lesser contributions from CYP2D6. Que-
tiapine and ziprasidone are metabolized by CYP3A4. In
contrast to the 2 previously released second-generation
antipsychotics, insufficient data are available to permit
comment on the clinical safety of the 3 newest drugs in
terms of metabolic drug—drug interactions.

Laboratory and in vivo metabolic studies of second-
generation antipsychotics need to be expanded. In
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particular, both controlled studies and case reports are
required to confirm the in vitro data and provide clini-
cians with indications and contraindications for con-
comitant therapy with these medications.
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